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Abstract

In the realm of education, the advent of large
language models (LLMs) has introduced new
potentials for enhancing student engagement
and learning. We present STEMERALD , a
STEM course assistant developed by tuning
the Gemma-2b language model. By employing
Supervised Fine-Tuning (SFT) and Direct Pref-
erence Optimization (DPO), we specialized the
model to solve university-level STEM ques-
tions, focusing on multiple-choice format. To
the best of our knowledge, DPO was never used
to fine-tune LLMs on this domain application.
We also made the model more accessible and
efficient through quantization to enhance ac-
cessibility on consumer hardware. Our results
demonstrate good generalization capabilities
on various subjects, positioning STEMERALD
as a valuable tool for educational support.

1 Introduction

The recent rise of LLMs opened up many possibili-
ties in the realm of education, particularly for the
development of question-answering (QA) chatbots.
In fact, timely providing learning support to stu-
dents has been widely recognized as a crucial factor
in improving student engagement and learning effi-
ciency during their independent studies (Dewhurst
et al., 2000).

Our work is motivated by empirical studies
demonstrating the strong potential of LLMs for
educational applications (Malinka et al., 2023; Sus-
njak, 2022). Specifically, LLMs have demonstrated
to be zero-shot solvers on a wide range of subjects,
including math, law, medicine, finance, program-
ming, and language (Wang et al., 2024). Thus, they
appear to have the potential to positively impact
the student’s learning process.

However, general purpose LLMs, which are not
specialized on any field of expertise, would lead
to poor results if directly applied to QA on these
fields (Zhao et al., 2024). This is due to two main

reasons. First, the behavior of an LLM after pre-
training might be untruthful, toxic, or simply not
helpful to the user (Ouyang et al., 2022). Second,
even if the LLM acquired some general knowledge,
it may be inaccurate and wrong in specific tasks
and topics. Therefore, an alignment phase is neces-
sary to teach the model how to provide helpful and
precise answers to student queries.

In this project, we fine-tuned and aligned an
LLM, namely Gemma-2b (Team et al., 2024), to
answer to university-level STEM questions.

1. We collected various datasets specific for our
task, often leveraging ChatGPT-3.5 to gener-
ate or extract text.

2. In the training phase, we performed SFT on
different datasets and DPO, (Rafailov et al.,
2023). The latter was performed on datasets
of ranked preferences.

3. We further specialized our model to only an-
swer multiple-choice questions. This special-
ization simplifies the model evaluation, given
that we can efficiently compute the accuracy
of model’s answers on unseen questions.

4. Finally, we performed quantization to de-
crease its size and make it more accessible
and efficient at inference time.

The result of our work is STEMERALD 1, a LLM
specialized for answering student question in the
STEM field. Thanks to its small memory footprint
achieved with quantization (approximately 2GB of
GPU memory), STEMERALD has high accessibil-
ity and it can run on consumer hardware, as the
model only requires approximately 2GB of GPU
memory.

1https://huggingface.co/matsant01/STEMerald-2b

https://huggingface.co/matsant01/STEMerald-2b


2 Related Work

Different papers explored various application sce-
narios of LLMs in classroom teaching, such
as teacher-student collaboration, personalized
learning, and assessment automation (Kamalov
et al., 2023; Tan et al., 2023). For instance,
(Kazemitabaar et al., 2024) developed CodeAid,
an LLM-powered coding assistant which answers
student questions, while not directly revealing code
solutions.

We identified two main approaches to refine
LLMs as teacher assistants for education: prompt
engineering and different versions of fine-tuning
and Reinforcement Learning with Human Feed-
back (RLHF (Ziegler et al., 2019)).

Recently, various prompting techniques, such
as Chain-of-Thought (CoT) (Wei et al., 2022) and
its variations (Wang et al., 2022), have emerged to
improve the quality of language model responses.
The advantage of these techniques is that they
do not require any update to the model weights.
Given their simplicity, they found wide application
in building educational question-answering LLMs
(Jie et al., 2023; Yue et al., 2023; Imani et al., 2023).
For instance, (Chen et al., 2023) evaluated a wide
spectrum of large language and code models with
different prompting strategies such as Chain-of-
Thoughts and Program-of-Thoughts, to enhance
performance in theorem proving.

Another approach involves using a combination
of SFT and RLHF, or slight variations of these
methods (Luo et al., 2023). For instance, (Yuan
et al., 2023) proposes Rejection sampling Fine-
Tuning, which uses supervised models to generate
and collect correct reasoning paths as augmented
fine-tuning datasets. Similarly, (Liang et al., 2023)
introduced a multi-view fine-tuning method that
efficiently exploits existing mathematical problem
datasets with diverse annotation styles.

Another variation of RLHF, namely DPO,
(Rafailov et al., 2023) has recently been proposed.
This method is simpler and more efficient than
RLHF, as it allows extraction of the optimal pol-
icy in closed form and solves the standard RLHF
problem using only a simple classification loss. To
the best of our knowledge, no prior work has ap-
plied DPO to build a to build a teacher assistant.
Moreover, most of the previous work focused on
building question answering LLMs for for math or
coding (Ahn et al., 2024; Wang and Chen, 2023).
We are interested to apply this approach to the

broader context of STEM subjects.

3 Approach

In this section, we present the base model cho-
sen in our work, explaining its features, then we
detail the fine-tuning techniques utilized, delving
into our complete training pipeline, which is syn-
tethized in fig. 1. Finally we talk about why we
employed quantization to get to our final system
and explain how we generated custom datasets,
apart from those already publicly available.

3.1 Base model: Gemma

To realize a chatbot for STEM students, and then
specialize it to MCQA, we used Gemma-2b (Team
et al., 2024) as the base model. It is a decoder-
only LLM, pretrained on a large corpora of text,
including mathematics and code, making it well
suited for our application domain. Gemma has
recently gained a lot of attention due to its good
trade-off between quality of generations and model
size (2.51 billions parameters). Among the differ-
ent available versions of Gemma, we experimented
with two: Gemma-2b and Gemma-2b-it. Gemma-
2b is the model after the pretraining phase, while
Gemma-2b-it starts from the same model but is fur-
ther improved using RLHF (Reinforcement Learn-
ing from Human Feedback) to make its outputs less
toxic and more helpful (Ouyang et al., 2022).Since
we are performing additional fine-tuning and align-
ment, it is not clear which version of the model is
going to perform better for our final task, therefore,
we experiment with both of them.

Gemma, is a decoder-only, or causal, language
model, i.e. a type of generative model that predicts
the next token in a sequence based solely on the
preceding tokens. Formally, given a sequence of
tokens x1, x2, .., xt, the model estimates the proba-
bility of each token in the vocabulary conditioned
on the previous sequence. This can be written as
p(xt|x1, x2, ..., xt−1). The model is trained to max-
imize the likelihood of the training data, leveraging
the chain-rule to factorize the sequence probability:

p(x1, x2, ..., xt) =
T∏
t=1

p(xt|x1, x2, ..., xt−1)

Thanks to this auto regressive approach, since each
word is only influenced by the preceding context,
the causality of the language is preserved.
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Figure 1: Full training pipeline of STEMERALD . The first step consists of an optional training via SFT on
different datasets. Following, the second step is an optional training via DPO on preference pairs datasets. Lastly,
three datasets are used to fine-tune the model specifically for the MCQA task (ARC, ScienceQA and EPFL-MCQA).

3.2 Fine-tuning methods
To fine-tune Gemma, we employed Low-Rank
Adaptation (LoRA, (Hu et al., 2021)) and trained
with supervised fine-tuning (SFT) and direct pref-
erence optimization (DPO).

1. Low-Rank Adaptation (LoRA, (Hu et al.,
2021)) is a parameter-efficient fine-tuning
(PEFT) technique. It works by freezing the
pretrained model weights and injecting train-
able low-rank decomposition matrices into
each layer of the transformer architecture.
LoRA allows to both reduce the memory foot-
print and the training time.

2. SFT performs maximum likelihood maximiza-
tion of the label (in our case, an answer) after
conditioning on some text (in our case, a ques-
tion).

3. DPO maximizes the log likelihood of the cho-
sen answer yw (w.r.t. a question x) and mini-
mizes the log likelihood of the rejected answer
yl using the starting model πr as a reference.
The loss formula (σ is the sigmoid function):

− log σ

(
β log

πθ(yw|x)
πr(yw|x)

− β log
πθ(yl|x)
πr(yl|x)

)
For the full objective, refer to (Rafailov et al.,
2023).

All the training steps are synthetized in fig. 1 and
detailed in the following:

Step 1: SFT We perform SFT for alternative
settings:

• The first one, denoted as DPO-chosen setting,
consists of performing SFT on the "chosen"

answers. This is usually done before applying
DPO, (see (Rafailov et al., 2023)), in order
to mitigate the distribution shift between the
base model and the answers, when they are
not generated by the same model.

• An alternative choice is using an external
dataset to enhance the reasoning and math-
ematical capabilities of the model. We picked
the Orca-Math Dataset (Mitra et al., 2024)
which comprises 200k grade school math
questions with the related answer and justi-
fication. The answers were generated with
GPT-4-Turbo and have been shown to greatly
increase capabilities of smaller LLMs (Mitra
et al., 2024). This setting is denoted as ORCA

• In case we do not perform any initial SFT, we
will denote this setting as BASE because it
corresponds to using the base model.

Step 2: DPO training We performed DPO on
datasets related to computer science or similar
STEM disciplines. Each dataset collected ques-
tions and pairs of answers. For each pair, one an-
swer is the preferred one, "chosen", and the other
is the "rejected". Note that one dataset used for
DPO, namely the EPFL dataset, was collected by
all the course students, and our method of gener-
ating and evaluating pairs of answer is detailed in
section 3.4.

Step 3: Fine-tuning for MCQA Additionally,
evaluating the truthfulness of our model on ques-
tion answering is challenging, as no quantitative
evaluation is possible. Therefore, we focused on
a simpler subtask: multiple-choice questions an-
swering. This allows to more easily quantify the



performance. The datasets used for this step are
detailed in section 4.1, and comprise textual expla-
nation of the answer provided.

3.3 Quantization
Gemma-2b, with its 2.51 billions parameters, is not
suited to run on consumer hardware, severely lim-
iting its usability and equitable access. To reduce
the memory footprint of our model, we use quanti-
zation to get to our final system. Quantization re-
duces model size and computational requirements,
by casting all floating point values (FP-32 or FP-16)
to 4-bit NormalFloat (NF4) (Dettmers et al., 2024),
making it possible to reduce the overall memory
footprint of the model to 25% of its original size,
from ≈10GB to less than 2.5GB. We analyze how
this reduction affects the practical performance in
the MCQA task, both in terms of truthfulness of
the system and quality of its generated answers.

3.4 Dataset generation
Among all the datasets utilized (detailed in sec-
tion 4), all the course students created a dataset,
starting from 1522 questions taken from EPFL’s
STEM courses, referred to in this article as the
EPFL dataset. Our goal was to generate ranked
pairs of answers to those questions to have a dataset
suitable for Reinforcement Learning for Human
Feedback (RLHF, (Ouyang et al., 2022)). To gen-
erate answers we prompted ChatGPT-3.5.

1. The preferred answer was generated using
Zero-shot-CoT (Kojima et al., 2023), i.e. by
adding "Let’s think step by step" before each
answer.

2. To generate the rejected answer, no CoT
was applied to reduce the quality of the gener-
ate text and thus obtain less accurate answers.

If the preferred answer was unsatisfactory, we it-
eratively provided hints and prompted ChatGPT
again until we were content with the result. If both
answers were equally good or bad, we prompted
the model to reconsider one of them with questions
like "are you sure?" to get new answers with
different quality. We evaluated every answer w.r.t.
different criteria, that are correctness, relevance,
clarity, completeness, and were summarized in an
‘overall‘ preference.

Also, we further processed this dataset to use
it for the MCQA task. Specifically, we filtered
out open questions, keeping only multiple-choice

ones, and we prompted ChatGPT-3.5 to identify the
chosen option (A, B, C, D) in each textual answer,
outputting it in JSON format.

Since for each question multiple answers were
given, each generated from independent students,
we only kept the most frequent option. For instance,
if 10 answers identified the option ’B’ as the cor-
rect one, while 4 answers identified option ’A’, 3
the option ’C’ and 2 the option ’D’, we kept only
the answers corresponding to the option ’B’. See
section 7 for the full prompt used.

4 Experiments

In this section, we explain in detail all the per-
formed experiments, presenting the datasets uti-
lized and reporting all the hyper-parameters and
evaluation metrics. We then present the results, de-
termining the best model which composes our final
system STEMERALD .

4.1 Data

To train our system, we used various datasets in the
different steps. We divide the data in two categories
(cfr. fig. 1): datasets used to perform DPO (step 2)
and datasets used for SFT (steps 1 and 3).

Data for DPO The EPFL dataset collects 1522
STEM questions from university level courses and
around 26k preference pairs, which are composed
by answers to such questions. section 3.4 explains
how this dataset was collected. Also, the Stack
Exchange dataset (Lambert et al., 2023) contains
questions and answers to various topics (e.g. math-
overflow, cstheory, security etc.). Each answer
comes with a score based on the number of up-
votes and for each question we selected the answer
with the highest score ("chosen"), then randomly
chose another answer with a strictly lower score
("rejected"). We were able to extract around
290k preference pairs.

We combined these two datasets, training on 50k
preference pairs, and using 2.5k pairs for validation
and 2.5k for testing. All sets are balanced between
EPFL and Stack datasets.

All samples were formatted following mark-
down inspired format:

Answer the following question,
reasoning step by step.

### Question: {question}
### Answer: {answer}



Data for SFT For step 1 of our training pipeline,
we used an additional dataset, Orca-Math (Mi-
tra et al., 2024), containing 200k grade-school
math word problems. The aim of fine-tuning on
this datasets is enhancing the reasoning abilities
of Gemma, so to excel in mathematical problem-
solving.

For step 3, that is performing SFT on MCQA
data, we used three datasets:

• ScienceQA (Lu et al., 2022), which con-
tains multiple-choice questions on different
subjects. We selected questions which did
not contain images, restricting to biology,
physics, chemistry, economics, earth-science
and "science-and-engineering-practices". In
total, we collected around 2500 samples for
training and 200 samples for testing.

• AI2 Reasoning Challenge (ARC) (Clark et al.,
2018) contains over 7k grade-school level
multiple-choice science questions. We used
6291 samples for training and 200 for testing.

• EPFL-MCQA, explained in section 3.4,
counts 2912 answers to 582 questions (about
5 different valid answers for each question) in
the training set, and 100 questions in the test
set.

For these datasets, textual explanations to answers
were not always available. However, previous
works (Wei et al., 2022) has shown how much
making the model reason helps improving its final
answer, therefore we collected explanations using
ChatGPT-3.5 and used them for the third step of
training. The rationales were generated by prompt-
ing ChatGPT with the same prompt (shown below),
removing those few samples where GPT was not
answering correctly.
The template we used for MCQA is:

You are a helpful assistant for STEM
students.
You will receive a multiple-choice question
and you should answer correctly.

Question: {question}
Answer: Let's think step by step. {answer}
Thus, the correct answer is: {letter}.

Note that, at inference time, we used the
guidance2 package for constrained decoding. The

2https://github.com/guidance-ai/guidance

model is firstly given the input question with op-
tions, and said to "think step by step". After gener-
ating 512 tokens or a EOS-token, the model has to
generate the final answer by selecting a letter from
’A’ to ’D’.

4.2 Evaluation and Baselines
We use different metrics to evaluate our system.
First, to assess the best DPO model we look at the
test reward accuracy on DPO test data, i.e. the
percentage of times the model assigns a higher
reward to the chosen answer than to the rejected
one. The reward is here defined as

r(x, y) = β log
π(y|x)
πref(y|x)

where β represents the KL regularization coeffi-
cient (in the original loss), π the current model, πref
the reference model, x and y represent the prompt
and the generated text respectively.

We assess models performance on MCQA using
accuracy. Moreover, in section 5 we perform a deep
qualitative evaluation of the textual explanations
provided by the different models, to understand
which one could be more useful in practice for
an user. The criteria that we chose for qualitative
evaluation are:

• Logic reasoning: all the steps of the explana-
tion should be logically consistent.

• Truthfulness: the model should not introduce
untruthful knowledge to answer a question,
regardless that the final answer is correct.

• Clarity: the student should be able to under-
stand the explanation the model gives.

• Coherence between explanation and final
answer: whether the final answer is aligned
with the reasoning steps in the explanation.

We also evaluate the quantized models in the same
way, to quantify the performance loss after quanti-
zation.

The baseline that we report is Gemma-2b-it,
which outputs reasonable and well-structured gen-
erations, contrary to the not instructed Gemma-2b,
which proved less reliable. Going forward we will
refer to Gemma-2b-it either as baseline or Gemma
base. We test Gemma base both zero-shot and
one-shot, trying to leverage its moderate in-context
learning capability to improve the quality of its
answers.

https://github.com/guidance-ai/guidance
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Figure 2: Accuracy of DPO models in identifying
the preferred answer, comparing different training tech-
niques and learning rates.

4.3 Experimental Details
In all our experiment, we fine-tune using LoRA
with rank = 32 and α = 64, limiting the number
of trainable parameters to about 1.5% of the total.
To speed up training and reduce memory usage, we
use the following settings:

• We save activations in half precision (FP16)

• We employ gradient checkpointing (Chen
et al., 2016) for the gradient computation

• We use gradient accumulation to simulate a
batch size of 8, experiencing smoother conver-
gence and avoiding out of memory issues.

All experiments were performed on a single
NVIDIA Tesla V100 SXM2 32GB.

Settings for DPO For DPO training, We experi-
mented using AdamW optimizer (Loshchilov and
Hutter, 2017) with different learning rates, ranging
between 5 · 10−6 and 5 · 10−7. All models were
trained for 4 epochs, keeping the checkpoint with
the lowest validation loss. We used learning rate
warm-up for 150 steps and the default Hugging-
face learning rate scheduler. Finally, we use the
DPO regularization parameter β = 0.1

Settings for SFT Also for SFT, we used AdamW
optimizer, with a fixed learning rate (5 · 10−5). We
used gradient accumulation of 32 for Orca-Math
dataset and 8 for MCQA data. All SFT trainings
were performed for 1 epoch, since in early experi-
ments we witnessed overfitting if training for more
epochs.

4.4 Results
What are the best DPO settings? The first set
of experiments, summarized in fig. 2, was aimed to
find the best settings for DPO training, so we ex-
perimented with Gemma-2b as the base model and

Quantization No NF4

Model
it-ORCA-DPO-MCQA* 0.750 0.720
it-DPO-MCQA 0.744 0.720
it-MCQA 0.736 0.700
it-ORCA-MCQA 0.722 0.714
MCQA 0.702 0.654
DPO-MCQA 0.694 0.674
Gemma-it-OneShot 0.546 0.520
Gemma-it 0.518 0.518

Table 1: µ-average of accuracy over the three MCQA
datasets. Note that a model whose output is always ‘A’
would reach 0.32 accuracy, since the distributions of the
answers is: 32% ‘A’, 31% ‘B’, 21%‘C’ and 16%‘D’.

using different learning rates, trying with and with-
out performing SFT in advance (on the winning
answer for each pair). We find out that not perform-
ing SFT before DPO consistently leads to slightly
better reward accuracy on test data. That is why we
choose to fix the learning rate to 5 ·10−7 and to not
fine-tune on preference data before applying DPO.

What is the best training procedure for MCQA?
Once defined the best settings for DPO, we train six
models using the full pipeline, as presented in fig. 1,
trying to mix-and-match different combinations of
choices. Precisely, we train the following models
(reported in fig. 3, in orange):

• Gemma-2b and Gemma-2b-it fine-tuned on
the MCQA datasets (respectively, "MCQA"
and "it-MCQA" in the plots)

• Gemma-2b and Gemma-2b-it trained with
DPO and fine-tuned on the MCQA datasets
("DPO-MCQA" and "it-DPO-MCQA")

• Gemma-2b-it pre-trained with Orca-Math,
with and without DPO, finally tuned for
MCQA: "it-ORCA-MCQA" and "it-ORCA-
DPO-MCQA"

Table 1 reports the µ-averaged accuracy among test
sets. These results clearly show the improvement
of fine-tuned models over the baseline, both consid-
ering the zero-shot and one-shot case. Moreover, it
is noticeable that fine-tuning an instructed model
leads to better results. Finally, a negligible im-
provement is achieved by models that underwent
also DPO training. On the other hand, a single
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Figure 3: Accuracy in MCQA task across different test sets, for different configurations of our training pipeline.
The black line for each bar represents the accuracy value obtained after 4-bit quantization. Baseline models are
reported in blue, fine-tuned model in orange. Models with "it" in their names were trained starting from Gemma
instructed, ORCA refers to further pre-training using Orca dataset and finally MCQA refers to the third step of the
trianing pipeline.

DPO training requires almost 2 days of computa-
tion, while the MCQA fine-tuning step takes about
30 minutes. So, we conclude that an heavy DPO
training does not bring any significant improvement
and that it is not worth investing such demanding
computational expenses.

Moreover, table 1 also proves that the quantized
version of our models generally retain most of the
performance on the test sets. From our results,
we cannot attribute any role to DPO in retaining
performance, as the average performance loss is
0.025 for DPO models and 0.031 for non-DPO
ones, when quantized. Notably, the best quantized
models are also the best before quantization.

Section 5 reports both a qualitative evaluation
and an analysis of the answers generated by our
best model, it-ORCA-DPO-MCQA, that will con-
stitute our final system STEMERALD .

5 Analysis

In this section we analyze the output of STEMER-
ALD to understand its strengths and weaknesses.
We first perform a qualitative evaluation of some
sampled answers, focusing on mistakes made by
the system and categorizing them using the cri-
teria defined in section 4.2. Also, we present a
fine-grained visualization of the model accuracy,
splitting the questions by subject (fig. 4). Note that
only ScienceQA and EPFL-MCQA dataset provide
information about the topic of the question.

5.1 Qualitative Evaluation

We inspected 50 generated answers and reported
the relevant ones. Coherently with the accuracy in
reported in table 1 roughly 70% of the answer were
correct (such as .4), but not always a correct answer
means a flawless explanation. The full generated
answers are reported in section 7, here we only
report some portion of the generations.

First, the model sometimes refers to an option
without being clear on which option is the subject
of the sentence (as in example .1). We also no-
ticed inconsistency between the explanation and
the chosen option .3. Crucially, many generations
contain untruthful knowledge, often providing well
detailed and precise answers where a single wrong
term completely flips the meaning of the answer.
For instance, in .6 the model states that the last
layers of a neural network contain generic features
(while the "first layers" would be correct). It also
fails to answer questions related to very simple con-
cepts, such as "by going from underwater toward
the surface you get closer to the center of Earth"
(see .2).

Curiously enough, sometimes the quantized
model performs better than the original one (see
.7), but other times it fails (see .5).
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6 Ethical considerations

6.1 Language Adaptation for High-Resource
and Low-Resource Languages

Non-English datasets are more rare online, but
they could be generated with a similar procedure
to the one used to create the EPFL preference
data. Specifically, we could request exam ques-
tion datasets from universities where the primary
language is French, German, or Spanish, and utiliz-
ing ChatGPT-4 to produce ranked pairs of prefer-
ences. In fact, ChatGPT-4 has shown great capabil-
ities for these high-resource languages (Berrezueta-
Guzman et al., 2023; Jung et al., 2023), thus it can
effectively generate these datasets. The training
procedure would then follow the one described in
this report.

For low-resource languages, like Urdu and
Swahili, the adaptation process presents more chal-
lenges due to the scarcity of data. To overcome this
issue, different strategies can be employed:

• The development of translation models for
low-resource languages (Ranathunga et al.,
2023; Gu et al., 2018) would allow translating
the dataset used in this project into the low-
resource target language. Once translated, the
same processes described in the report can be
applied to the translated dataset.

• Pre-trained models on high-resource lan-
guages with similar linguistic structures can
be fine-tuned on low-resource languages. This

require a smaller dataset for the final fine-
tuning, thus making the procedure feasible
even for low-resource languages.

6.2 Interaction with Users in Signed
Language

To interact with users in signed language, our
model must understand and interpret it. Similarly
to what was done by (Lim et al., 2023), we would
need to train a vision model (e.g. CNN, Visual
Transformer (Dosovitskiy et al., 2020)) to recog-
nize the sign language hands position and facial
expression. Several datasets are available for this
purpose (Li et al., 2020; Ronchetti et al., 2023).
The recognized signs would be translated into nat-
ural language and then inputted into our LLM. The
rest of the pipeline would remain the same.

6.3 Potential Harms
A well-implemented student assistant system may
lead to student over-reliance (Milano et al., 2023).
If our teacher assistant works perfectly, students
might avoid solving homework and projects inde-
pendently, resulting in poor learning outcomes. Fur-
thermore, since our model can still make mistakes,
students relying on it might learn incorrect infor-
mation. Therefore, teacher supervision remains
crucial for ensuring accurate educational outcomes,
and the model itself could be futher tuned to push
the students to interact with their teachers.

7 Conclusion

In this project, we demonstrated that STEMER-
ALD , our system trained on top of Gemma-2b, is
a powerful tool for STEM education. It achieves
notable accuracy in multiple-choice question an-
swering and benefits a massive reduction in mem-
ory consumption from quantization, requiring only
2GB of GPU, being suited to operate efficiently
on consumer hardware. Despite its specialization
to multiple-choice formats, which limits broader
application, STEMERALD project sets a promising
foundation for future explorations of specializing
LLMs for STEM students. Future perspectives in-
clude adding mechanisms for retrieval augmented
generations or fine-tuning a mixture of many mod-
els, specialized on different subjects, still retaining
benefits of quantization to keep the system size rea-
sonable, while benefiting from more specialized
knowledge.
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Appendix 0: AI usage appendix

Apart for the usage of AI-based tools for data collection, labeling and extraction, all discussed in detail in
the report, the only tools our group employed is GitHub Copilot. This tool was mainly used to speed up
coding, and never relied on for multiple-lines code snippets, so that we constantly supervised it output.

Appendix 1: Model Prompt for Answer Extraction

Few shot prompt used to make GPT-3.5 extract from a given answer to a MCQ the letters corresponding
to the chosen answers.
You are a helpful assistant for answer extraction. You will receive an open question with multiple
choices and a long explanatory answer. Your task is to extract from the long answer the letter (or
letters) corresponding to the correct answer (or answers) and output it as a JSON file.

## Example 1
### Input:
### Question: Which of the following scheduler policies are preemptive?
Options:
A. FIFO (First In, First Out)
B. SJF (Shortest Job First)
C. STCF (Shortest Time to Completion First)
D. RR (Round Robin)

### Answer:
SJF (Shortest Job First) and RR (Round Robin) are preemptive scheduler policies.

SJF is preemptive because if a new job arrives that has a shorter processing time than the currently
running job, the scheduler will preempt the current job and switch to the new job.

RR (Round Robin) is also preemptive because each process is given a small unit of time to execute before
being preempted and moved to the back of the queue. This allows for fair allocation of CPU time among
all processes.

### Response:
{

"correct_choices": ["B", "D"]
}

## Example 2:
### Input:
### Question: Under which condition is an element $x \in \mathbb{Z}_n$ invertible?
Options:
A. $\mathsf{gcd}(x, \varphi (n)) = 1$.
B. $\mathsf{gcd}(x, n-1) = 1$.
C. $\mathsf{gcd}(x, n) = 1$.
D. $\mathsf{gcd}(x, n) \neq 1$.

### Answer:
The correct answer is: '$\mathsf{gcd}(x, n) = 1$.'

Explanation: An element $x \in \mathbb{Z}_n$ is invertible if and only if it is coprime with $n$. In
other words, the greatest common divisor (gcd) of $x$ and $n$ must be 1 for $x$ to be invertible in
$\mathbb{Z}_n$. This is because if $x$ and $n$ have a common factor greater than 1, then $x$ cannot
have a multiplicative inverse in $\mathbb{Z}_n$.
Therefore, the condition for an element $x \in \mathbb{Z}_n$ to be invertible is $\mathsf{gcd}(x, n) =
1$.

### Response:
{

"correct_choices": ["C"]
}

### Input:
<input-question-here>

### Response:



Appendix 2: qualitative Analysis

.1 Unclear selected answer
Question: Suppose Beth decides to go on the drop tower. Which result would be a cost?

Options:
A. Beth will save some ride tickets. She needs fewer tickets to go on the drop tower than on the
screaming swing.
B. Beth will give up the chance to go on the screaming swing. She would have had more fun on that ride.

Answer: Let's think step by step.

This result is a cost. It involves giving up or spending something that Beth wants or needs:
Beth will give up the chance to go on the screaming swing. She would have had more fun on that ride.
Thus, the correct answer is: B.

.2 Gravity goes up
You are a helpful assistant for computer science and STEM students. You will receive a multiple-choice
question and you should answer correctly.

Question: Complete the statement. Assume that the whale's mass did not change.
The gravitational potential energy stored between the whale and Earth () as the whale swam toward the
surface.

Options:
A. increased
B. stayed the same
C. decreased

Answer: Let's think step by step.

True: A Predicted: C
Think about how the distance between the whale and the center of Earth changed.
The bottom of the pond was lower than the edge of the pond. As the whale swam toward the surface, the
distance between the whale and the center of Earth decreased. So, the gravitational potential energy
stored between the whale and Earth decreased as the whale swam toward the surface.
Thus, the correct answer is: C.

.3 Inconsistency between reasoning and answer

Question: During digestion, fructose is produced by the breakdown of larger molecules. Which type of
molecule could be broken down to increase the body's fructose levels?

Options:
A. proteins
B. vitamins
C. triglycerides
D. carbohydrates

Answer: Let's think step by step.

True: D Predicted: D
During digestion, fructose is produced by the breakdown of larger molecules, such as starches, proteins,
and fats. To increase the body's fructose levels, the breakdown of starches, proteins, and fats would
be necessary.
Thus, the correct answer is: D. carbohydrates.

.4 Good job!
Question: Your input is "Distributed Information Systems". Your model tries to predict "Distributed"
and "Systems" by leveraging the fact that these words are in the neighborhood of "Information". This
model can be:?

Options:
A. Bag of Words
B. Word Embeddings
C. LDA
D. kNN



Answer: Let's think step by step.

True: B Predicted: B
The correct answer is:
- Word Embeddings

Explanation:
- Word Embeddings: Word embeddings are numerical representations of words that capture their semantic
meaning. By leveraging the fact that the words "Distributed" and "Systems" are in the neighborhood of
"Information", the model can predict these words by analyzing the surrounding words in the text.
- Bag of Words: The Bag of Words model is a statistical model that represents text as a document-term
matrix. It does not leverage the context of words in the neighborhood of a specific word.
- LDA (Latent Dirichlet Allocation): LDA is a probabilistic topic modeling algorithm that can be used
to identify latent topics in a collection of documents. It does not directly leverage the context of
words in the neighborhood of a specific word.
- kNN (k-Nearest Neighbors): kNN is a supervised machine learning algorithm that classifies a new data
point based on the majority class of its k nearest neighbors. It does not leverage the context of words
in the neighborhood of a specific word.

Therefore, the model can be predicted by leveraging the fact that the words "Distributed" and "Systems"
are in the neighborhood of "Information".
Thus, the correct answer is: B.

QUANTIZED
True: B Predicted: B
The correct answer is:
- Word Embeddings

Explanation:
- Word Embeddings: Word embeddings are a technique used in natural language processing to represent
words as vectors in a high-dimensional space. This technique allows us to capture semantic relationships
between words, which can be leveraged to predict the correct word based on the context.
- Bag of Words: The Bag of Words model is a technique used in information retrieval to represent documents
as lists of words. It does not leverage the context of words in the neighborhood of "Distributed" and
"Systems" to predict the correct word.
- LDA (Latent Dirichlet Allocation): LDA is a probabilistic topic modeling technique used in natural
language processing to identify latent topics in a collection of documents. It does not leverage the
context of words in the neighborhood of "Distributed" and "Systems" to predict the correct word.
- k-Nearest Neighbors (k-NN): k-Nearest Neighbors is a supervised machine learning algorithm used for
classification. It does not leverage the context of words in the neighborhood of "Distributed" and
"Systems" to predict the correct word.

Therefore, the correct answer is Word Embeddings.
Thus, the correct answer is: B.

.5 Quantization messed it up
Question: The test loss of the 1-nearest neighbor classifier is always zero.

Options:
A. TRUE
B. FALSE

Answer: Let's think step by step.

True: B Predicted: B
The statement is FALSE. The test loss of the 1-nearest neighbor classifier is not always zero. In
fact, the test loss of the 1-nearest neighbor classifier can be non-zero. This is because the 1-nearest
neighbor classifier can sometimes misclassify the data point being tested, leading to a non-zero test
loss.
Thus, the correct answer is: B.

QUANTIZED
True: B Predicted: A
The statement is true. The test loss of the 1-nearest neighbor classifier is always zero because it



is the simplest classifier that always predicts the class of the training data. The test loss is the
loss of the classifier on unseen data, and since the 1-nearest neighbor classifier always predicts the
class of the training data, the test loss is always zero.
Thus, the correct answer is: A.

.6 Untruthful
Question: You want to build a convolutional neural network to distinguish between types of cars in
images. Your friend Alice, a biologist, has been working on a network to classify wildlife, which she
calls WildNet. She spent several weeks training that network, and made it accessible to you. What can
you do with it?

Options:
A. Nothing, wildlife is not the same as cars.
B. I can't reuse any of the weights of any layer, but I can take inspiration from the architecture of
WildNet.
C. I can freeze the last few layers, and then remove the early layers and replace it with my own
re-learned layers. That way, I can make use of the generic features learned by WildNet.
D. I can freeze the early layers, and then remove the last layers and replace it with my own re-learned
layers. That way, I can make use of the generic features learned by WildNet.
E. I can use WildNet right away for my task, without modifying anything.

Answer: Let's think step by step.

True: D Predicted: C
The correct answer is: I can freeze the last few layers, and then remove the early layers and replace
it with my own re-learned layers. That way, I can make use of the generic features learned by WildNet.

Explanation:
1. Freeze the last few layers of WildNet: This step is crucial as it allows the network to retain the
generic features learned by WildNet, which can be reused in your task.
2. Remove the early layers: This step involves removing the layers that were trained on specific types
of cars in the WildNet model.
3. Replace the early layers with your own re-learned layers: This step involves retraining the network
on your task data to learn new features and make predictions.
4. Use WildNet as a baseline: By freezing the last few layers of WildNet and removing the early layers,
you can leverage the generic features learned by WildNet as a starting point for your task.
5. Make use of the generic features learned by WildNet: By replacing the early layers with your own
re-learned layers, you can make use of the generic features learned by WildNet to improve the performance
of your task.
Thus, the correct answer is: C.

.7 Quantized is better
Question: Categorical Cross-Entropy loss:?

Options:
A. Minimizing the distance between the predicted point and the true point
B. Maximizing the probability of the correct class
C. Minimizing the score of false classes when they are close, or bigger than, the score of the true
class
D. Maximizing the accuracy

Answer: Let's think step by step.

True: C Predicted: D
The correct answer is: Minimizing the score of false classes when they are close, or bigger than, the
score of the true class

Explanation:
- Categorical Cross-Entropy loss is a loss function used in machine learning to measure the difference
between the predicted probabilities of a class and the actual probabilities of a class.
- Minimizing the distance between the predicted point and the true point: This is not the correct answer
as the goal of using a loss function is to minimize the distance between the predicted probabilities
and the actual probabilities.
- Maximizing the probability of the correct class: This is not the correct answer as the goal of
using a loss function is to minimize the distance between the predicted probabilities and the actual
probabilities.
- Minimizing the score of false classes when they are close, or bigger than, the score of the true
class: This is the correct answer as the goal of using a loss function is to minimize the distance



between the predicted probabilities and the actual probabilities, with the aim of minimizing the score
of false classes when they are close to or larger than the score of the true class.
Thus, the correct answer is: D.

QUANTIZED
True: C Predicted: C
The correct answer is: Minimizing the score of false classes when they are close, or bigger than, the
score of the true class

Explanation:
- Categorical Cross-Entropy loss is a loss function used in classification tasks where the model predicts
the probability of belonging to one class.
- The loss is calculated by comparing the predicted probabilities of the true class and the predicted
probabilities of the false classes.
- Minimizing the score of false classes when they are close or bigger than the score of the true class
means that the model is more likely to predict the true class correctly.
- This approach helps the model to focus on correctly classifying the true class and minimizes the
impact of false predictions.
Thus, the correct answer is: C.


