

Heterogeneous Graph Convolution
for Book Recommendations

Matteo Santelmo
EPFL, Lausanne, Switzerland

matteo.santelmo@epfl.ch

Stefano Viel
EPFL, Lausanne, Switzerland

stefano.viel@epfl.ch

Abstract—This work investigates the use of modern Graph
Convolutional Network (GCN) architectures on Heteroge-
neous Graphs, targeting a recommendation task. Utilizing
the GoodBooks-10K dataset, state-of-the-art methods, namely
GraphSAGE and Graph Attention Networks, have been used to
generate nodes representation employed in an encoder-decoder
architecture. The superiority of these methods over traditional
baselines for recommender systems such as matrix factorization is
shown in our results. Leveraging the flexibility of Heterogeneous
Graphs and sampling-based batching for efficient training on
large graphs, we demonstrate that integrating additional infor-
mation to the bipartite graph representing user-item interactions
allow a significant improvement in recommendation relevance
precision. Our code is made available on GitHub1.

I. INTRODUCTION

Given the recent growth in popularity of recommendation
system powered by graph approaches, this project aims to
showcase a particular example of this type of problem. In
the state of the art, providing relevant recommendation is a
problem that is addressed with very different approaches, from
Matrix Factorization [1] to Neural Collaborative Filtering [2]
and Graph Convolutional Networks [3]. This variety arises
because domain- and application-specific tasks can lead to
different problem definitions, highly dependent also on the
type of data that is available.

As further discussed in section II-A and II-E, our approach
leverages the flexibility of graph representation to enrich the
prediction thanks to heterogeneous information. As a conse-
quence, we focused on methods capable of dealing with appro-
priate structures and scalable to provide recommendations for
new users, based on their purchase history, without requiring
additional gradient updates.

As shown in [4], graph-based methods allow to incorpo-
rate auxiliary information, such as times and user attributes,
while also capturing high-order connections. Unlike traditional
approaches like Matrix Factorization [1], which focus on
direct interactions, graph-based methods allows to process
multi-hops relationships thanks to convolution. This broader
context enables them to outperform traditional methods. In
this work we will experimented with two architectures, namely
GraphSAGE [5] and Graph Attention Networks (GAT) [6].

We modeled the recommendation problem as a link regres-
sion task over a bipartite graph. The model predicts the edge

1Code available at: https://github.com/matsant01/graph RecSys.git

label between a user node and a book node as a continuous
value from 1 to 5, representing the expected user rating for that
book. At inference time, we predict the ratings a user would
give to all unread books and recommend those with the highest
ratings. Among the other common modeling options for this
task, link prediction was discarded as it only predicts whether
or not the user will buy a certain book and not his degree
of satisfaction. Using this approach would either necessitate
discarding ratings below a certain threshold or, if these ratings
were retained, it would lead to recommending books similar to
those a user purchased but didn’t like. Link classification has
also been considered, but achieved poor results in experiments.
This is likely because the model, treating ratings as separate
labels, fails to capture the ordinal relationship between them.

II. METHODOLOGY

A. Data description

Our model will be evaluated on the GoodBooks-10K
dataset2. It is a collection of user ratings and metadata for
the 10,000 most popular books on Goodreads. The dataset
contains ratings from 53,424 users, where each user has 20
or more ratings. While all user are anonymous each book has
metadata information (authors, title, original publication year
etc.). The dataset consists in 5,976,479 ratings that users gave
to books they read, the ratings go from 1 to 5. Moreover, a list
of user-defined genre tags (e.g., fictional, fantasy, education)
is also available, together with the count of the times each tag
was assigned to each book, and finally a users’ to-read list is
available for each user.

B. Baselines

To evaluate the performance of our model two baselines
were considered: a Gaussian random baseline and matrix
factorization.

The first baseline is a rather simple normal distribution
with mean and standard deviation derived from the training
data. At inference time we randomly sampled ratings from
this distribution for each user-book pair in the test set and
evaluated the predicted results.

Secondly, we consider matrix factorization: ratings are
represented in a matrix X where where the element (X)i,j
is the rating given by i-th user to the j-th book, or 0 if the

2https://github.com/zygmuntz/goodbooks-10k/tree/master

https://github.com/matsant01/graph_RecSys.git
https://github.com/zygmuntz/goodbooks-10k/tree/master

user didn’t reviewed the book. Our aim is to find two matrices
W and Z such that:

X ≈ W · Z⊤ (1)

where X ∈ RD×N is usually a very sparse matrix, while
W ∈ RD×K and Z ∈ RN×K are such that K ≪ N,D.
The key idea of matrix factorization is indeed to use previous
ratings to compute low dimension representations for users
(W) and items (Z), whose inner product estimates the rating
that the user would give to the book. In order to compute those
low-rank matrices, the following loss is optimized:

minL(W,Z) := (2)

1

2

∑
(d,n)∈Ω

[xdn − (WTZ)dn]
2 +

λw

2
||W ||2Frob +

λz

2
||Z||2Frob

where Ω represents the set of users and books for which
we have a rating. The loss was optimized with stochastic
gradient descent and a regularization was introduced to prevent
overfitting and stabilize the training. Eventually, the recom-
mendations are selected by estimating X as W ·Z⊤ and taking
the items with highest predicted rating.

C. Heterogeneous graph

We construct a bipartite directed graph from the dataset,
with users and books as nodes. An edge exists between a
user and a book if the user has rated that book. To allow the
message passing in the graph neural network from the books
to the user, for each edge from a user to a book we also added
the reverse edge.

Specifically we loaded our data with a PyTorch Geometric
[7] Heterogeneous Graph. This data structure enables to store
nodes and edges of different types and as well as saving edge
labels, enclosing all the relevant information and preventing
the need for custom manipulation of the graph representation.

To apply the architectures described in the next section
II-E the embedding of each node needs to be initialized. For
book nodes, initial features are computed using SBERT-based
models [8] to compute the sentence embedding of a book’s title
and author. This choice is based on the fact that such models
are trained to generate semantically meaningful embeddings
of sentences, allowing us to include more information in our
graph, and thanks to their extensive pre-training phase they
should have meaningful representations also for well-known
people such as writers. On the other hand, for user nodes, we
don’t have further information, therefore hand-crafted features
have been used to at least provide some information from
the graph structure. In particular, degree centrality, PageRank
and average rating were chosen to create our initial feature
vectors for users. One-hot encoding was also a candidate, but
given the considerable number of users (∼50k) this option was
discarded.

Thanks to the flexibility of the graph data structure, further
experiments were conducted to assess the benefit of providing

additional information to the model. Specifically, one node for
each author and one for each language were added and con-
nected to the corresponding books nodes. The initialization of
the authors’ nodes features was again generated with SBERT
embedding of the author name. Having instead a very limited
amount of different languages (26), each language’s node was
initialized with a one-hot encoded vector. Our hypothesis is
that adding information about authors and languages will help
even more exploiting the graph structure and improve the
performance, as we expect to see certain users more often
connected with books of their native tongue and favorite
authors, contributing to the improvement of predictions.

D. Data Splits

To guarantee a fair comparison between models, data was
divided into a train, validation and test split. Each split is
represented by a graph with all users and books nodes, but only
a subset of edges from users to books (each associated with a
rating). Specifically, the training set contains 80% of user-book
edges with corresponding labels (ratings). The validation set
includes the same 80% of user-book edges as the training set
without labels (to be used only for message passing) and a 10%
of user-book edges not appearing in the previous group (with
labels). This allows the computation of the graph convolution
on the same edges as the training set, while evaluating the
predictions on a new set of user-book edges. Similarly, the
test set consists of 90% of the user-book edges without labels
(80% from training and 10% from validation) for the message
passing and the remaining 10% of user-book edges with labels
to evaluate the model. Figure 1 visually explain the splitting
technique3.

Fig. 1: Graphical explanation of data splitting technique oper-
ated on edges.2

In the case of the graph with the additional authors and
languages nodes, the splitting procedure remains unchanged
as it only targets edges between user and book nodes. So, all
the books and authors nodes are included in all the splits.

E. Architecture

As anticipated in the introduction, our aim is to compute
relevant recommendation by solving an edge regression task.
To achieve this, our architecture is composed by an encoder,
responsible for the computation of meaningful node embed-
dings, and a decoder that computes the predicted rating, i.e.

3Credits to Zhuoqing Fang for his article available here

https://zqfang.github.io/2021-08-12-graph-linkpredict/

the edge label, given the node embeddings of a user and a
book.

Two different architectures have been tested and compared
for the encoding step, namely GraphSAGE [5] and GAT
[6]. Both these techniques can be framed in the message
passing framework, where nodes updates their representations
iteratively by sending, receiving and aggregating information
of their neighborhood. In particular, GraphSAGE key inno-
vation over previous approaches is the possibility to learn
the function that aggregates information from a node’s local
neighborhood. Considering the mean aggregator, that we used
in our experiments, the update of the embedding hu of node
v in GraphSAGE is computed as:

h(k)v = σ

W (k) ·

h(k−1)
v ∥ 1

|N (v)|
∑

u∈N (v)

h(k−1)
u

 (3)

where ∥ denotes the concatenation, k refers to the iteration,
σ is a non-linear activation function (ReLU in our case) and
N (v) represents a fixed-size uniform sample of nodes from
the neighborhood of node v.

The main improvement introduced by GAT comes from
the assumption that the influence of neighbors is neither
identical nor pre-determined by the graph structure, therefore
this method differentiates the contributions of neighbors using
attention mechanism and updates the vector of each node by
attending over its neighbors.

Moreover, a key issue of simpler GCN and matrix factoriza-
tion is their inherently transductive nature that doesn’t allow
them to generalize to unseen data. By learning an aggrega-
tion function that summarizes neighborhood information, both
GraphSAGE and GAT features have inductive capabilities,
which is valuable considering that recommendation systems
often deal with dynamic number of users and items.

One linear layer for each node type is employed to project
the initial features to the same dimension before applying
convolution. Finally, a decoder composed by 3 layer fully
connected neural network takes as input the concatenated
embeddings from a user node and a book node, and outputs
of a scalar representing the predicted rating.

The objective used to trained our model is the same as
the one optimized by Matrix Factorization, i.e. the Mean
Square Error between the predicted and true ratings, with
no regularization. As discussed in the introduction, we also
conducted experiments treating the task as edge label classi-
fication, using cross-entropy loss with the true rating as the
gold label. However, the results were poor, so this approach
was discarded.

F. Batching

Given the size of our dataset, computing full gradient
updates on the whole dataset is not feasible on standard
customer GPUs. To efficiently apply convolutions on big
graphs, we employed the batched and sampling approach
proposed in [5]. The key idea is to pre-compute smaller graphs

(mini-batches) by collecting all the necessary nodes: starting
from batch_size nodes, a fixed amount of neighbors of
each node is sampled and added to the mini-batch, repeating
this process num_conv_layers times. Appendix A of [5]
explains this in detail.

G. Evaluation

To evaluate our models we used a set of classification
accuracy metrics, namely precision@k, recall@k, F1-score@k
and MAP@K (Mean Average Precision at K). It must be noted
that these metrics aim to assess the quality of recommendation
by focusing on classification between relevant and irrelevant
items [9], and don’t directly use the ratings value if not for
ranking (top-k) and establishing relevance with a threshold.
This type of metric is particularly suitable for applications in
e-commerce that try to persuade users to purchase products or
services [10].

Precision@k is the fraction of recommended items in the
top-k set of relevant items. In our case an item is relevant if it
has a ground truth rating greater or equal to 4 (which serves
as our threshold). The precision@k is calculated individually
for each user and then averaged across all users. So, for each
user we select the top-k books with true ratings greater than
the threshold. Then, we compute how many of the predicted
ratings for this set of books are higher than the threshold. This
count is divided by the number of relevant items, capped at k.
In symbols:

Precision@k =
of recommended items @k that are relevant

of relevant items @k
(4)

Recall@k is the proportion of relevant items found in the
top-k recommendations. Like Precision@k, it is first calculated
for each user and then averaged across all users. For a given
user, we assess how many of the top-k recommendations
(based on predicted ratings) are actually relevant (have a
ground truth rating higher than the threshold). Mathematically:

Recall@k =
of recommended items @k that are relevant

total # of relevant items
(5)

In order to summarize the values of recall@k and preci-
sion@k into a single metrics we define F1-score@k as the
harmonic mean of these two.

To avoid bias toward specific values of k, we employed
MAP@k which computes the average of the Precision@k for
all the k up to a certain value, as follows:

MAP@k =
1

|U |

|U |∑
u=1

1

min(k, nu)

k∑
i=1

Precision@i(u) (6)

where U is the number of users and nu is the number of
relevant items for user u.

We chose MAP@K to be our reference metric for two
main reasons. Firstly, precision@k itself is more relevant
than recall@k, in fact, if the number of relevant items for

a certain user is greater than k, which is a reasonable
case, then there will be an upper bound for the recall@k,
namely k

total # of relevant items , making this metric less appropriate
to quantify the relevance of recommended items. Secondly,
precision@k is strictly dependent on k, therefore it’s more
robust to consider an average over different number of recom-
mendations.

All of the metrics described above will be computed on a
set of user-book pairs for which we already have rating. While
this might appear a biased approach, as we are predicting
ratings and evaluating them on books that we already know
the user will purchase, this choice is needed as we lack ground
truth ratings for other potential edges. An alternative approach
would have been possible only by defining the problem as
an edge prediction task, but this would have required non-
trivial negative sampling mechanisms that could have biased
the results as well. Moreover, at inference time we can
expect the distribution of books that a user will consider to
buy to resemble those they have already bought. Thus, the
metrics used are justified, as they are computed on a similar
distribution during training.

III. EXPERIMENTS AND RESULTS

To assess the best hyperparameters for our model, a grid
search has been performed over a subset of our dataset. The
dataset was created by sampling a portion of 2,000 users,
while retaining all the books and the ratings connected to
the chosen users, leading to a sub dataset with distribution of
ratings and ratings-per-user significantly close to the original
ones. A training, validation and test splits have been derived as
described in II-D and used for fair comparison. The parameters
of interest for this search are the number of convolution
layers, the encoder architecture type, the dimension of node
embeddings and the learning rate. The values of MAP@k
for all the tested models, reported in figure 2, show that
GraphSAGE is outperforming GAT and also that increasing
the number of convolutions is not improving performance,
likely because considering longer distance connection is less
informative than just 2-hops relationship (e.g. two users are
in the same neighborhood only if they reviewed one common
book).

The settings achieving the best performance, except for the
learning rate as its linked to the batch size, have been used
to train models on the full dataset, both with and without
authors and languages nodes. For this last case the number
of SAGEConv layers has been increased to allow higher order
connectivity, fundamental to consider relations between users
and authors or users and languages. The results, presented in
Table I, show a significant increase in performance of our
GraphSAGE approach compared to baseline, and a further
improvement when using additional data.

It must be noted that the values for metrics shown in Table I
are considerably lower than the ones achieved on the subset of
our dataset (Fig. 2). That’s because the recommendation task
becomes easier with fewer books if k is fixed, as a relevant
book is more likely to appear in the top k. But since the

128 256 512
Hidden channels

0.
00

01
0.

00
05

0.
00

1Le
ar

ni
ng

 ra
te

0.523 0.568 0.618

0.550 0.611 0.582

0.558 0.635 0.623

2 Conv. Layers

128 256 512
Hidden channels

Le
ar

ni
ng

 ra
te

0.547 0.568 0.561

0.572 0.565 0.554

0.601 0.608 0.571

4 Conv. Layers

0.52

0.54

0.56

0.58

0.60

0.62

0.64

MAP@15 with SAGE-based encoder

128 256 512
Hidden channels

0.
00

01
0.

00
05

0.
00

1Le
ar

ni
ng

 ra
te

0.433 0.467 0.486

0.535 0.492 0.540

0.492 0.522 0.558

2 Conv. Layers

128 256 512
Hidden channels

Le
ar

ni
ng

 ra
te

0.417 0.489 0.513

0.542 0.457 0.490

0.574 0.549 0.399

4 Conv. Layers

0.52

0.54

0.56

0.58

0.60

0.62

0.64

MAP@15 with GAT-based encoder

Fig. 2: Mean Average Precision at 15 among different config-
urations of hyper-parameters, compared over a subset of the
GoodBooks-10K dataset.

Model MAP@15 Precision@5 Recall@5 F1@5
Random Baseline 0.471 0.472 0.332 0.379

Matrix Factorization 0.489 0.494 0.312 0.371
EncDec with SAGE 0.551 0.552 0.347 0.414

*EncDec with SAGE
+ Additional nodes 0.593 0.596 0.380 0.450

TABLE I: Final Experiments results

distribution of ratings per user remains consistent our results
on the subset dataset generalize to the full dataset.

IV. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this work, we explored the application of modern GCN
architectures to recommender system. In particular, we showed
that the powerfulness of such methods in conjunction with the
flexibility of heterogeneous graphs allow to out perform other
approaches. The next step for this work would certainly be
a more extensive tuning of hyper-parameters, which was not
feasible given our limited amount of computational resources.
Future work might then explore the integration of nodes
representing other additional features (e.g. genre and tags),
which could further improve the performances. Finally, it
would be interesting to approach the same problem as a link
prediction task, and compare how the performances of the two
techniques compare.

REFERENCES

[1] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[2] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural col-
laborative filtering,” in Proceedings of the 26th international conference
on world wide web, 2017, pp. 173–182.

[3] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton,
and J. Leskovec, “Graph convolutional neural networks for web-
scale recommender systems,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining, ser. KDD ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 974–983. [Online]. Available:
https://doi.org/10.1145/3219819.3219890

[4] ——, “Graph convolutional neural networks for web-scale recommender
systems,” in Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, 2018, pp. 974–983.

[5] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[6] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[7] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[8] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” 2019.

[9] F. Hernández del Olmo and E. Gaudioso, “Evaluation of recommender
systems: A new approach,” Expert Syst. Appl., vol. 35, pp. 790–804, 10
2008.

[10] G. Schröder, M. Thiele, and W. Lehner, “Setting goals and choosing
metrics for recommender system evaluations,” in UCERSTI2 workshop
at the 5th ACM conference on recommender systems, Chicago, USA,
vol. 23, 2011, p. 53.

https://doi.org/10.1145/3219819.3219890

	Introduction
	Methodology
	Data description
	Baselines
	Heterogeneous graph
	Data Splits
	Architecture
	Batching
	Evaluation

	Experiments and Results
	Conclusions and Future Developments
	References

