
Few-steps [Offline] Reinforcement Learning with
Large Language Models

Antonio Mari
antonio.mari@epfl.ch

Matteo Santelmo
matteo.santelmo@epfl.ch

Stefano Viel
stefano.viel@epfl.ch

Abstract

We explore the application of offline reinforcement learning (RL) algorithms in1

few-step environments using large language models (LLMs). We target algorithms2

that optimize immediate reward. We employ two environments: the game of3

Wordle and a simpler word replacement task. Our experiments aim to assess how4

RL algorithms, specifically behavioral cloning (BC), filtered behavioral cloning,5

and our proposed reward-weighted behavioral cloning (Weighted-BC), perform6

in these settings. We find that Weighted-BC generalizes both BC and filtered BC,7

and our empirical results align with theoretical expectations. Additionally, we8

investigate the impact of performance conditioning on these models.9

1 Introduction10

Reinforcement Learning serves as a powerful tool for large language models training and there has11

been extensive research on Reinforcement Learning for Human Feedback (RLHF) (Ouyang et al.12

2022), whose aim is aligning the output of a language model with human preferences. More generally,13

RL is useful to make LLMs accomplish tasks in a goal-directed manner.14

However, most of the recent work on RL applied to LLMs has focused on “single-step” RL problems,15

where a single response is optimized with respect to some reward model. This is not surprising:16

it is likely much easier to evaluate improvements to algorithms for single-step text generation as17

compared to multi-step generation, with multi-turn dialogue requiring time-consuming studies with18

human participants.19

In our work, we focus on understanding how some RL algorithms can be applied and extended20

in a more general multi-step settings. We are interested in few-steps environments to assess how21

algorithms suited for the single-step case (which optimize the immediate reward) perform on short22

horizon scenarios.23

Our few-steps environment is Wordle (Wardle 2021), a game in which a player has to guess a secret24

five-letters word and has in total six guesses to do so. After every guess, the game provides feedback25

on which letters of the guess are present in the secret word and if they are correctly positioned.26

Moreover, we also experiment with a simple single-turn toy-environment, namely word replacement,27

which consists of replacing some specific words in a piece of text.28

The reasons behind the choice of these environments: i) we have access to the exact reward, ii) we29

can generate a dataset with a given-policy, having access to an environment simulator. This way, we30

generate datasets with both expert policies and noisy policies. In the former case, we would like to31

clone the expert behavior, while in the latter case we are interested in learning the behavior that leads32

to high reward. To this end, we test which methods can well exploit good samples in low quality data.33

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Contributions:34

1. We formalize the Wordle environment in 2.1.2, explaining why it differs from the common35

settings where RL is usually applied on LLMs.36

2. We analyze an algorithm proposed by our laboratory supervisors, namely the weighted37

Behavioral Cloning, understanding how its formulation changes under this different type38

of environment. We detail all the subtleties of this approach, hoping to shed lights on its39

potential pitfalls.40

3. We show how Behavioral Cloning and Filtered Behavioral cloning represent limit cases of41

Weighted-BC, as its hyperparameter β tends to infinity or to zero, respectively.42

4. We experiment these methods on different quality datasets, to see if any real benefit we can43

get from weighted-BC.44

2 Methods45

In this section, we formalize the environments used in our work, then present the RL algorithms used46

to fine-tune our LLMs. As pre-trained language models, we used Pythia-14m (Biderman et al. 2023)47

for the word replacement task and OPT-350M (S. Zhang et al. 2022) for Wordle.48

2.1 Environments49

We experiment with a simple single-step environment, namely "word replacement", in order to50

perform quick tests of our method, but the main focus is the Wordle environment. That is why we51

formalize Wordle in detail and we define the reward-weighted behavioral cloning considering the52

underlying Markov decision process. Both environments provide explicit and easily computable53

reward and we have access to a simulator to run online evaluation of fine-tuned LLMs.54

2.1.1 Word Replacement55

Word replacement is a single-turn toy environment where the player’s task consists of replacing some56

words in an input sentence, following a replacement map learned during training. Specifically, given a57

vocabulary V and a replacement map d : K → T where K, T ⊆ V , the model task is simply taking an58

input sentence and outputting the same sentence where all occurrences of a word k ∈ K are replaced59

with the corresponding target word t = d(k). A reward between between 0 and 8 was assigned to a60

response proportionally to the number of words correctly replaced, and set to -8 if the model was61

replacing a word that shouldn’t have been replaced, in order to discourage illegal substitutions.62

2.1.2 Wordle63

In this section, we formalize the Markov Decision Process (MDP) of the Wordle game. We denote64

as Σ the lower-case English letters alphabet, (i.e., Σ = {a, b, . . . , z}) and we choose a vocabulary65

V ⊂ Σ5, where, for a set A, An = A×A×· · ·×A indicates the Cartesian product of A with himself66

n-times. Note that V contains only English five-letter words, and in the original game |V | = 230967

(while for our simplified experiments we choose a smaller dictionary, |V | = 100). In every game,68

a random "secret" word is chosen uniformly form the vocabulary, i.e. w ∼ U(V) and represents69

the word to guess. We also define the feedback set F = {⟨−⟩, ⟨y⟩, ⟨g⟩}5, where a ⟨−⟩ represents a70

letter that is not present in the secret word w, ⟨y⟩ represents a letter that is present in w but in another71

position, ⟨g⟩ indicates that the letter is correctly positioned as in w. So the feedback is deterministic72

when w is fixed. In general, w is not known so the feedback will be a random function.73

The Wordle game MDP is a tuple (S,A, r, P, µ, γ), where74

1. A state s = (g1, fw(g1), g2, fw(g2), . . . , g6, fw(g6)) ∈ (Σ5 ×F)6 =: S represents a valid75

board.76

• gi ∈ V ∪ {⊥},∀i ∈ {1, 2, . . . , 6}, i.e. each guess on the board is a five-letters English77

word or is empty. The latter case is represented by the special symbol ⊥.78

• fw(gi) =∈ F ∪ {⊥}, i.e. each feedback follows a guess and depends on the secret79

word, which is not observed. Note than fw(g) = ⊥ ⇐⇒ g = ⊥,∀w ∈ V80

2

Note that not every board states is valid. Informally, after an empty guess ⊥ there could not81

be any non-empty guess on the board and the feedback for each guess has to adhere with the82

secret word w. With that said, we denote the set of all the valid boards given the secret word83

w as D(w).84

2. An action a = g ∈ V is a valid guess, so the action space A = V is discrete and any guess85

can be performed at any state.86

3. The reward rw(s, a) : S×A → R depends on the secret word w and is defined as rw(s, a) =87

h(fw(a)). In our case, h = 0 ·#(⟨g⟩)− 3 ·#(⟨y⟩)− 5 ·#(⟨−⟩) counts the occurrences88

of each symbol in the feedback and assign them a score (0 for ⟨g⟩, -3 for ⟨y⟩, -5 for ⟨−⟩).89

This way, the range of the reward is [−25, 0], with the lowest reward achievable when the90

feedback is (⟨−⟩, ⟨−⟩, ⟨−⟩, ⟨−⟩, ⟨−⟩) and the highest corresponding to the correct guess91

(⟨g⟩, ⟨g⟩, ⟨g⟩, ⟨g⟩, ⟨g⟩).92

4. The transition probabilities P (s′|s, a) are characterized as follows:93

P (s′|s, a) =
∑
w∈V

p(w, s′|s, a) =
∑
w∈V

p(w)p(s′|s, a, w) = 1

|V |
∑
w∈V

p(s′|s, a, w)

Note that p(s′|s, a, w) is actually deterministic because an action uniquely determines the94

next guess present on the board and the feedback is a deterministic function of w. Moreover,95

if we define s and s|(a,w) to be of the form96

s = (g1, fw(g1), . . . , gi, fw(gi),⊥,⊥, . . .)

s|(a,w) := (g1, fw(g1), . . . , gi, fw(gi), a, fw(a), . . .)

when the action a and the secret word w are fixed, then for all s ∈ S:97

P (s′|s, a, w) =
{
1 if s′ = s|(a,w),
0 otherwise

Actually, the transition probability P (s′|s, a) is a mixture of deterministic discrete distribu-98

tions where all components are weighted uniformly and the stochasticity of the transition99

is directly linked to the stochasticity of the feedback, which depends on the latent variable100

w. Also note that the transition probabilities are actually independent of the state s (that is,101

all the previous guesses and feedback received) and really depend only on the action and102

the secret word. With that said, we have to include all this information because the policy103

learned to solve the game has to use it to make new guesses.104

5. The initial distribution µ is deterministic since the starting state for every game is105

(⊥,⊥, . . .).106

6. Since we are dealing with a finite horizon environment, the discount factor γ = 1 (note: we107

will change this setting in section 2.4)108

In our work, the policy π(·|s) is parameterized by a language model and we encode a state s in a109

prompt-string. Given a state s:110

s =((a, r, i, s, e), (⟨−⟩, ⟨y⟩, ⟨−⟩, ⟨y⟩, ⟨y⟩),
(r, o, u, t, e), (⟨g⟩, ⟨−⟩, ⟨y⟩, ⟨−⟩, ⟨y⟩),
(r, u, l, e, s), (⟨g⟩, ⟨y⟩, ⟨−⟩, ⟨y⟩, ⟨g⟩),
⊥,⊥,⊥,⊥,⊥,⊥)

Its string encoding is reported in figure 1.111

2.2 Behavioral Cloning112

A commonly used offline RL approach for language model training is behavioral cloning (BC),113

which consists of performing supervised fine-tuning on a dataset D composed of (s, a) pairs where114

a ∼ πE(s) and πE is an expert policy which we seek to clone. The maximum likelihood objective:115

πMLE = argmaxπ
∑

(s,a)∈D

log π(a|s)

A common variation of BC is the filtered behavioral cloning, which first filters the data following116

some criteria, in order to learn only from the most successful samples, rejecting the others. In our117

case, a natural criterion for filtering is the reward r.118

3

Guess a five-letter word
based on previous attempts and feedback.
Feedback symbols: ’-’ (letter not in word),
’y’ (letter in word but wrong position),
’g’ (letter correct and in right position).
Review previous guesses and feedback:
Guess 1: a r i s e | Feedback: - y - y y
Guess 2: r o u t e | Feedback: g - y - y
Guess 3: r u l e s | Feedback: g y - y g
Response:

Figure 1: An example of a prompt for a Wordle game guess. Note that letters are separated by white
spaces to make sure that they are all tokenized separately. The expected correct guess is "r e b u s".

Input:
a cat wants to be in the garden

Response:
meh cat wants to be in bah garden

Input:
a cat wants to be in the garden

Response score: 4.0/8.0

Response:
a cat wants doo be in bah garden

Replacement Map:
{"the": "bah",
"a": "meh",
"be": "ruh",
 "to": "doo" }

Figure 2: Example of data sample for word replacement task, generated using the replacement map on
the left and probability of replacement p = 0.5, therefore providing a moderately noisy signal to the
model. In the center and on the right respectively, two samples without and with reward conditioning.

2.3 Performance conditioning Behavioral Cloning119

A surprisingly effective method to leverage the generalization and in-context learning abilities of120

LLMs is performance conditioned behavioral cloning (Shypula et al. 2023). Inspired by prompting121

strategies (T. Zhang et al. 2023) and offline RL (L. Chen et al. 2021), this method adapts BC for122

LLMs by directly introducing a reward signal into the training process by explicitly incorporating123

this information in the prompt. In practice, this means modifying each (s, a, r) triple to a new one124

(s̃, a, r), where s̃ encodes both information about the current state and the reward r = r(s, a). This125

allows the model to implicitly learn a mapping between responses and their correctness, which can126

be used during inference to improve results by asking the model to provide a response with the best127

reward.128

2.4 Reward-Weighted Behavioral Cloning129

Our main contributions revolve around the Reward-Weighted Behavioral Cloning (Weighted-BC).130

In this section, we introduce its formulation and analyze the approximation involved, identifying131

where potential pitfalls may reside. Moreover, we show how this approach generalizes both BC and132

Filtered-BC.133

Reward optimization as a limit Given the Wordle environment introduced in section 2.1.2 and for134

γ ∈ (0, 1), the value function of a policy π is defined as follows:135

V π(s) := E

[
6∑

t=1

γt−1rw(st, at)|s1 = s, π

]
As we take the limit as γ → 0, the horizon degenerates and only the immediate reward is considered:136

lim
γ→0

V π(s) = Ew∼U(V),s∼D(w),a∼π(·|s) [rw(s, a)]

Note that for a single-step environments and γ = 1 this limit matches V π(s). Conversely, in a general137

multi-step environment, if we approximate the value function with this limit then the quality of our138

approximation is going to be worse as the number of steps grows. Our working assumption: in139

few-steps environment (such as Wordle, where the number of steps T = 6), we assume that such140

approximation is "good enough", in the sense that by optimizing the immediate reward we could141

good results as if we optimized the quality/value function.142

4

Starting point: DPO loss The loss commonly used for RLHF is the following (cfr DPO paper143

Rafailov et al. 2023, we adapted the expected value on Wordle data):144

max
θ

Ew∼U(V),s∼D(w),a∼πθ(·|s)[rw(s, a)]− βDKL[πθ(·|s)||p(·|s)]

where p is a reference policy (a pre-trained LLM or an handcrafted policy), defined over states s, and145

β ≥ 0 is a regularization parameter that modulates how far we may stray from p(·|s).146

The expected value is taken with respect to the space of the observable data, which represents all the147

possible wordle games. A sample from this dataset space is drawn first by sampling the secret word148

uniformly from the vocabulary w ∼ U(V) and then sampling a "random" state s ∼ D(w), where149

D(w) is the set of legal board states which are consistent with the secret word w. We can assume150

that a sample is draw uniformly random from this set, but this assumption is actually violated in the151

datasets that we are going to use, where full trajectories are drawn (see section 3.2).152

As shown in Rafailov et al. 2023 (and here adapted due to the introduction of the expected value on153

w), the analytical solution to this objective is:154

π⋆(a|s, w) = 1

Z(s, w)
p(a|s) exp

(
1

β
rw(s, a)

)
where Z(s, w) is the (intractable) partition function that ensures that

∑
a∈A π⋆(a|s, w) = 1.155

Nota Bene: π⋆ is conditioned on both s and w, but the policy that we are interested to clone should156

not be conditioned on w. A natural way to obtain it is marginalizing out w (overloading π⋆ symbol):157

π⋆(a|s) =
∑
w∈V

p(w|s) · π⋆(a|s, w)

Another crucial approximation that we do next is assuming p(w|s) = p(w), i.e. w is independent of158

s, so that:159

Ew∼U(V)[π
⋆(a|s, w)] =

∑
w∈V

p(w)π⋆(a|s, w) = π⋆(a|s)

Weighted-BC Objective Proposed idea1: optimize a cross-entropy objective whose solution is160

π⋆(·|s) (under the approximation as before)161

L(θ) = Ew∼U(V),s∼D(w)

[∑
a∈A

π∗(a|s, w) log πθ(a|s)

]

= Ew∼U(V),s∼D(w)

∑
a∈A p(a|s) exp

(
1
β rw(s, a)

)
log πθ(a|s)∑

a∈A p(a|s) exp
(

1
β rw(s, a)

)


= Ew∼U(V),s∼D(w),a∼p(·|s)

[
1

Z(s, w)
exp

(
1

β
rw(s, a)

)
log πθ(a|s)

]
Since the explicit value of p(·|s) is not directly accessible, for each state s we sample n times from162

this distribution and denote the obtained set of samples as As, with |As| = n. Consequently, we163

set p̂(·|s) := U(As), so we can approximate both the expected value over p(·|s) and Z(s, w) using164

p̂(·|s) instead. Our sampled loss is denoted as L̂:165

L(θ) ≈ L̂(θ) := Ew∼U(V),s∼D(w),a∼p̂(·|s)

 exp
(

1
β rw(s, a)

)
∑

a∈As
exp

(
1
β rw(s, a)

) log πθ(a|s)


Some considerations:166

• The objective is a likelihood where actions are weighted using their reward. The population167

population weights are, for all w ∈ V , s ∈ D(w) and a ∈ A:168

ρ(a|s, w) =
exp

(
1
β rw(s, a)

)
∑

a∈A exp
(

1
β rw(s, a)

)
1Explain exactly who proposed it and how

5

• These weights are approximated using sets of samples As:169

ρ̂(a|s, w) =
exp

(
1
β rw(s, a)

)
∑

a∈As
exp

(
1
β rw(s, a)

)
• The sampled loss L̂(θ) is a biased estimator of L(θ) because the expected value does not170

distribute over products and divisions (unless independence holds, which is not the case).171

Weighted-BC generalizes BC and Filtered-BC Let us analyze the limit behavior of the weighted-172

BC. Let n = |As| for every s ∈ D (where D is a generic dataset) and let b be the batch size used for173

our updates.174

1. When β → 0, the weights ρ(a|s, w) → 1 on the action with maximum reward (assuming it175

is unique). It corresponds to Filtered-BC, where the batch size is b/n.176

2. When β → ∞, ρ(a|s, w) = 1/n, ∀a ∈ As. It corresponds to BC, since the constant 1/n177

does not affect the solution of the optimization problem.178

3 Experiments179

In this section, we evaluate the mentioned methods on both environments. In our experiments, the180

main research questions are:181

Q1. Does weighted-BC empirically match our theoretical expectation? How the hyper-parameter182

β affects the performance? Can weighted-BC outperform the baselines?183

Q2. Does the performance-conditioning help in solving the tasks?184

Q3. What changes if we have a dirty dataset, which comes from a policy with sub-optimal185

behavior?186

3.1 Word Replacement187

Given the simplicity of this task, the experiments were conducted on a less powerful language model188

and using a quite noisy signal. In particular, the performance of different models discussed in section189

2 were compared using a dataset generated with a probability of replacement of the key-words of190

p = 0.25. The results, in figure 3, show that despite having a relatively noisy signal, filtered BC191

proved to always achieve better rewards, both in the performance conditioned and unconditioned192

cases. A possible explanation behind this unexpected behavior stands in the way the reward is defined,193

in particular because in all cases where there is no word to be replaced in the input, the non-filtered194

methods will see more samples being identical while not being useful for the model to learn the task,195

despite their high reward. 3.196

3.2 Wordle197

We test our wordle environment using two datasets, the first one generated using an handcrafted198

expert policy πE and the second generated using a noisy policy, which consists of a mixture between199

πE and a random policy.200

The datasets are generated in the following way:201

1. A secret word w is sampled from U(V). Then, a Wordle game with that secret word is202

played by drawing samples from p(·|s). At each turn of a game, N samples are generated203

and they are gathered in the set As, along with their rewards. Since multiple actions are204

generated each turn, a random one is then kept for next turn and the state s is updated.205

2. This process is repeated M times, so that at the end we will have collected trajectories that206

correspond to M Wordle games.207

6

10
3

10
2

10
1

10
0

 (only for Weighted-BC)

3

4

5

6

R
ew

ar
d

Avg Reward
NO performance conditioning

10
3

10
2

10
1

10
0

 (only for Weighted-BC)

R
ew

ar
d

Avg Reward with
performance conditioning

BC
Filtered-BC
Weighted-BC
Train data
Filtered train data

Figure 3: Average reward (with 0.95 confidence interval) for word replacement single-turn task.
Weighted BC was tested over different βs and both BC and Weighted BC were trained with suboptimal
supervisions (dashed line), while Filtered BC’s reference dataset had more quality samples. Weigthed
BC’s performance are between BC and Filtered BC, as theoretically expected, approaching Filtered
BC and standard respectively with small β and high β.

10
2

10
1

10
0

10
1

10
2

 (only for Weighted-BC)

0.4

0.6

0.8

W
in

-R
at

e

Avg Win-Rate
NO Performance Conditioning

10
2

10
1

10
0

10
1

10
2

 (only for Weighted-BC)

W
in

-R
at

e

Avg Win-Rate with
Performance Conditioning

Weighted-BC
BC
Filtered-BC

Figure 4: Win-rate (over 1000 games) of models trained on the expert policy dataset. 5000 games
were used for training, where at every step 5 independent guesses are sampled from the expert policy.
Then, the guess associated with the highest reward is kept for Filtered-BC while a random guess
is used to continue the game. The batch size is 128 for BC and Weighted-BC, 25 for Filtered-BC,
and the learning rate is consistently 5e-05. The same number of gradient updates was performed
across models, ensuring the convergence of the training.

3.2.1 Expert policy dataset208

The expert policy is handcrafted and at each step filters all the words in the vocabulary based on the209

known constraints and randomly samples among the filtered words. The win-rate of this policy over210

5000 games is 99.84%.211

The results are showed in fig. 4, and the answers to our research questions:212

A1. The empirical results match the expectation. Discarding data is harmful because all guesses213

are generated by the expert policy πE and, despite some fluctuations, by modulating β it214

appears that we approach both limits (i.e., Filtered-BC for small β, BC for high β), closing215

the gap between the two methods.216

A2. Performance-conditioning leads to worse win-rates in both baselines, while it does not217

change much for weighted-BC. At this stage, it is not really clear if these results are218

statistically significant, so that runs with multiple seeds would help to assess whether there219

is a real difference between the two plots of fig. 4.220

3.2.2 Mixture of Expert and Random Policy dataset221

The "mixture policy" is a mixture between the expert policy and a random policy, with the mixture222

weight p = 0.4. This means that, with 40% probability, a sample is drawn from a random policy (so223

7

10
2

10
1

10
0

10
1

10
2

 (only for Weighted-BC)

0.3

0.4

0.5

0.6

0.7

W
in

-R
at

e

Avg Win-Rate
NO Performance Conditioning

10
2

10
1

10
0

10
1

10
2

 (only for Weighted-BC)

W
in

-R
at

e

Avg Win-Rate with
Performance Conditioning

Weighted-BC
BC
Filtered-BC

Figure 5: Win-rate of models trained on the mixture policy dataset. Same training settings as in
fig. 4

from a uniform distribution over the whole dictionary) and with 60% probability it is drawn from πE .224

The win-rate of the mixture policy over 5000 games is 92.4%. This good performance is explained by225

the fact that sampling random words helps exploration of new constraints, so subsequent non-random226

guesses will still leverage the constraints discovered. Results on this dataset are reported in fig. 5227

A1. Also in this case, empirical results match the expectation. Opposite to the previous case,228

Filtered-BC dominates by only retaining the best examples (1/5 of them) and we can clearly229

observe weighted BC approaching filtered-BC for small β.230

A2. Similar considerations than before can be drawn. The only difference is that we observe a231

boost in BC win-rate, but we are far from being able to reach any conclusion on performance232

conditioning.233

A3. Generally, in the expert policy dataset we can reach higher win-rates (> 80%) and, according234

to our intuition, leveraging all the available high-quality data, as well as filtering only the235

good-data in a dirty dataset, is the strategy that achieves the highest win-rate.236

4 Discussion237

As claimed in DPO paper, the hyper-parameter β regulates the "strength" of the KL regularizer term.238

This intuition is consistent with our experiments on weighted-BC. In particular, high β means strong239

adherence to the reference policy. This will lead to better results if the data was generated using an240

expert policy. Conversely, for small β ≈ 0, we optimize the reward without adhering to the reference241

policy, thing that is desirable when the data is dirty or noisy.242

In the high quality data scenario, as expected, the best results are obtained by the methods that are243

leveraging more data, i.e. BC and Weighted BC with high β, while for poor quality data the best244

results are achieved by methods which leverage samples with higher rewards, either by filtering or by245

using a very accentuated weighting.246

It is worth noting that if we do not have prior information about the cleanliness of our data then247

weighted-BC seems to be a proper choice to achieve reasonable performance in different scenarios.248

Future works should firstly address a more exhaustive experimentation to confirm the validity of249

our results and possibly compare with more complex algorithms capable of optimizing over the250

cumulative reward or an approximation of it, going over the limitation of optimizing on the immediate251

reward.252

References253

Biderman, Stella et al. (2023). “Pythia: A suite for analyzing large language models across training254

and scaling”. In: International Conference on Machine Learning. PMLR, pp. 2397–2430.255

Chen, Lili et al. (2021). “Decision transformer: Reinforcement learning via sequence modeling”. In:256

Advances in neural information processing systems 34, pp. 15084–15097.257

8

Ouyang, Long et al. (2022). “Training language models to follow instructions with human feedback”.258

In: Advances in neural information processing systems 35, pp. 27730–27744.259

Rafailov, Rafael et al. (2023). Direct Preference Optimization: Your Language Model is Secretly a260

Reward Model. arXiv: 2305.18290 [cs.LG].261

Shypula, Alexander et al. (2023). “Learning performance-improving code edits”. In: arXiv preprint262

arXiv:2302.07867.263

Wardle, Josh (2021). Wordle. https://www.nytimes.com/games/wordle/index.html.264

Zhang, Susan et al. (2022). “Opt: Open pre-trained transformer language models”. In: arXiv preprint265

arXiv:2205.01068.266

Zhang, Tianjun et al. (2023). “The wisdom of hindsight makes language models better instruction267

followers”. In: International Conference on Machine Learning. PMLR, pp. 41414–41428.268

9

https://arxiv.org/abs/2305.18290
https://www.nytimes.com/games/wordle/index.html

	Introduction
	Methods
	Environments
	Word Replacement
	Wordle

	Behavioral Cloning
	Performance conditioning Behavioral Cloning
	Reward-Weighted Behavioral Cloning

	Experiments
	Word Replacement
	Wordle
	Expert policy dataset
	Mixture of Expert and Random Policy dataset

	Discussion

